WLAN Netzwerk Systematik

Dieses Dokument erklärt die Betriebsmodus des WLAN – Modellbahnbetriebes

- ADHOC
- INFRASTRUCTURE

sowie die Möglichkeit zur Fernwartung über das Internet mittels

• Tunneling

Version 12.06.2016 (KG)

Unterschiedliche Betriebsmodus

Vergleich WLAN- ADHOC mit WLAN-INFRASTRUCTURE Betrieb

Frage/Kriterium	INFRASTRUCTURE	ADHOC
Wer ist Netzwerk-"Master"?	Stationärer WLAN-Router Loks sind Slaves	Steuerung in der Lok ist zugleich der WLAN-Router – Lok ist Master!
Wieviele Loks können in einem WLAN mitfahren?	Maximal 253 Loks pro WLAN, vor- eingestellt sind derzeit ca. 150	1 Lok pro WLAN
Wieviele Smartphones möglich / empfohlen?	254 - # Loks – 1 Router (maximal 126 Loks // 126 Smartphones)	1 Smartphone pro WLAN / Lok
Wieviele Weichen/Signale/Blöcke kann ein IP- Knoten ansteuern?	Ca. 400	keine
Wer steuert Weichen / Signale / Blockstrecken (Analog-Betrieb)?	Router, aber auch jeder weitere IP- Knoten (ca. 400 <u>pro</u> Knoten)	Nicht möglich
Wie wechselt man die Lok am Smartphone?	Umschaltung in eine andere NETIO-Oberfläche (nur eine SSID)	Wahl eines anderen Lok- WLANs (andere SSID)
Mehrere Loks von einem Smart- phone <u>gleichzeitig</u> ?	Entweder unter einer Oberfläche oder pro Lok separate Oberfläche	Nein
Mehrere WLAN-Netzwerke paral- lel?	Jedes Netzwerk benötigt eigene SSID (empfohlen ist eine separate Kanalnummer)	Jedes Netzwerk benötigt eigene SSID (empfohlen je WLAN eine separate Kanalnummer)
Trainline Service über Tunneling ins Internet?	WLAN - Router muss über Ethernet Kabel an den Hausrouter mit dem Internet verbunden werden. Jeder IP-Knoten in Modellbahn-WLAN wird unterstützt (alle IP-Loks)	Router in der Lok müsste über Ethernet Kabel an den Hausrouter mit dem Internet verbunden werden !

WLAN Netzwerkparameter & Grundsätze

Allgemeine Grundsätze und Router

- Den Router richtet der Experte zuerst ein, da der Router als Master im Netzwerk fungiert! Ohne Router kein WLAN: Der Router bestimmt die SSID, das WLAN-Passwort und den IP-Adressraum (das IP-Subnetz)!
- · Die Netzwerkparameter von Router und Loks (Smartphones etc.) müssen mindestens übereinstimmen in
 - SSID (eindeutig WLANs in Funkreichweite müssen unterschiedliche SSIDs haben)
 - WLAN-Passwort (mindestens 8 Zeichen)
 - IP Adressraum (z.B. 172.24.4.XXX) Doppelte IP-Adressen .xxx sind verboten Fehleranalyse ist extrem schwierig

Grundsätze Smartphones

- Smartphones müssen sich vorab mit dem Modellbahn WLAN über die SSID verbinden. Die automatische Einbuchung in WLAN-Netze muss unbedingt in den Smartphone Settings ausgeschaltet werden. Das WLAN-Passwort muss bei der Einbuchung (erstmalig) eingegeben werden.
- · Smartphones erhalten eine dynamische IP-Adresse vom Router (statische IP-Voreinstellung nicht empfohlen!)
- · Smartphones benötigen keine Kanaleinstellung diese scannen sie selbständig

Gundsätze Loks

- ADHOC: Loks benötigen eine eigene WLAN Voreinstellung mit eigener SSID / Passwort. Loks werden über das WLAN selektiert.
- INFRASTRUCTURE: Sobald das Smartphone im Modellbahn Netz eingebucht ist, können alle Loks über die NETIO-Oberfläche selektiert werden. In diesen Oberflächen sind die Lok-spezifischen IP-Adressen enthalten jede Lok benötigt also ihre eigene Oberfläche
- INFRASTRUCTURE: Doppelte Lokadressen sind verboten!
- · INFRASTRUCTURE: Loks benötigen keine Kanaleinstellung diese scannen sie selbständig

Grundsätze Service (Tunneling) & Internetanbindung

- Der Modellbahn WLAN- Router kann <u>optional</u> mit dem Internet (via "Hausrouter") über die Ethernet Buchse (RJ45) verbunden werden (nur vorhanden bei Raspberry Typ B oder B+). Er muss dann (zusätzlich) eine dynamische IP-Adresse vom Hausrouter über DHCP erhalten.
- Vorteile:
 - Es kann eine Fernwartung (z.B. ein Software-Update) über das Internet bis in die einzelne Loks durchgeführt werden (via Tunneling)
 - Das Smartphone kann (eingebucht im Modelbahn-WLAN) zugleich im Internet surfen (Modellbahnrouter wird zum WLAN-Access-Point)
- Alternativ kann ein "WEB-Stick" (UMTS-Modem) in eine USB-Buchse des Modellbahn-Routers eingesteckt werden. Der Modellbahn-Router stellt dann eine Internetverbindung über einen Mobilfunk-Provider selbst her (verlangt besondere Einstellungen, die in diesem Dokument nicht beschrieben werden)

Generelle Dateistruktur der WiFi Parameter

Die WiFi Parameter (WLAN-Parameter) sind auf der SD-Card gespeichert

Jede SD-Card besitzt zwei "Partitions". Legt man die SD-Card in einen PC, wird nur die FAT16 Partition ("Windows"-Partition) im Explorer (als Laufwerk) sichtbar. Die LINUX Partition bleibt unsichtbar und darf nicht verändert werden.

Man erkennt ein Dateiverzeichnis ("Directory"), das <wifi> heisst. Öffnet man dieses im Explorer, werden in dieser Ebene die Datei mit den Netzwerkparametern sichtbar. Diese sind die momentan voreingestellten aktiven WLAN-Dateien. Der WLAN-Charakter der SD- Card wird einzig durch die Dateien in diesem Verzeichnis bestimmt.

Loks im Slave Modus (INFRASTRUCTURE) benötigen <u>zwei</u> Dateien (i.prm, mode.prm). Die Router benötigen <u>vier</u> Dateien (i.prm, d.prm,h.prm, mode.prm) – so also auch die Loks im ADHOC Modus, in denen der Router mitfährt.

Die Datei i.prm für Lok in ADHOC Modus und Lok im INFRASTRUCTURE Modus sind trotz Namensgleicheit strukturell stark unterschiedlich. Sie können bei einer Umstellung zwischen beiden Modus nicht beibehalten werden.

In den zusätzlichen Directories <wifi_Infrastructure_Router>, <wifi_Infrastructure_Loco> etc. befinden sich vorkonfigurierte Dateien als "Muster". *Die Dateien dieser Unterverzeichnisse dienen lediglich als Speicherorte für Kopien, sind also nicht aktiv!*

Kopien können in die höhere Ebene <wifi> kopiert werden und sind dann aktiv. Vorher enthaltene Dateien evtl. in einem Unterverzeichnis sichern und dann in <wifi> löschen

Werkzeug zur Konfiguration

Als Editor zum Verändern der nachfolgenden Dateien empfiehlt sich notepad++ Eine ältere Kopie findet man auf der SD-Card im Directory /boot/Tools/ Neueste Versionen findet man unter https://notepad-plus-plus.org/

Diese Datei auf Ihrem windows oder LINUX PC starten

Die WiFi - Dateien mit diesen Werkzeug öffnen, editieren und wieder abspeichern

WIFI Dateien eines **Routers**, der in der Lok mitfährt (ADHOC), bzw. die Anlage stationär mit einem WLAN versorgt (INFRASTRUCTURE)

boot	save	10.06.2016 14:09	File folder	
camera	save_adhoc	10.06.2016 14:09	File folder	
command	📜 wifi_AdHoc	10.06.2016 14:09	File folder	
dyndns	📜 wifi_Infrastructure_Loco	10.06.2016 14:09	File folder	
qprs	wifi_Infrastructure_Loco_51	10.06.2016 14:09	File folder	
ison	wifi_Infrastructure_Loco_52	10.06.2016 14:09	File folder	
	wifi_Infrastructure_Loco_53	10.06.2016 14:09	File folder	
log	wifi_Infrastructure_Loco_54	10.06.2016 14:09	File folder	
mail	wifi_Infrastructure_Loco_55	10.06.2016 14:09	File folder	
Manual	📜 wifi_Infrastructure_Loco_56	10.06.2016 14:09	File folder	
overlays	wifi_Infrastructure_Router	10.06.2016 14:09	File folder	
parameter	🔟 d.prm	20.04.2016 12:27	PRM File	1 KB
plugin		20.05.2016 07:04	PRM File	1 KB
procid		20.04.2016 12:18	PRM File	1 KB
produ		25.01.2015 13:00	PRM File	1 KB
run				
status				

- System Volume Information
- 📕 Tools
- 📜 update
- version
- 📜 wifi

FAT-Bereich auf der SD-Card Explorer Sicht

WIFI Dateien der Slave- Lok (INFRASTRUCTURE), die in einem WLAN mitfährt (Router befindet sich stationär auf der Anlage)

📙 boot		10.06.2016.14:00	Filo folder		
📙 camera	save adhoc	12.06.2016 14:09	File folder		
command	wifi AdHoc	10.06.2016 14:09	File folder		
dvndns	wifi Infrastructure Loco	10.06.2016 14:09	File folder		
aprs	wifi_Infrastructure_Loco_51	10.06.2016 14:09	File folder		
ison	wifi_Infrastructure_Loco_52	10.06.2016 14:09	File folder		
	wifi_Infrastructure_Loco_53	10.06.2016 14:09	File folder		
log	wifi_Infrastructure_Loco_54	10.06.2016 14:09	File folder		
💄 mail	wifi_Infrastructure_Loco_55	10.06.2016 14:09	File folder		
📙 Manual	wifi_Infrastructure_Loco_56	10.06.2016 14:09	File folder		
📙 overlays	wifi_Infrastructure_Router	10.06.2016 14:09	File folder		
📜 parameter	🔟 mode.prm	25.01.2015 13:00	PRM File		1 KB
📙 plugin	iprm 2 Dateien bei	14.02.2016 10:27	PRM File		1 KB
📙 procid	SLAVE Betrieb				
📜 run					
📜 status					
📜 System Volume Information					
🣜 Tools					
📜 update					
version					
vifi	EAT-Bere	EAT-Bereich auf der SD-Card			

FAT-Bereich auf der SD-Card Explorer Sicht

22

Android App "Wifi Analyzer"

Es wird daher dringend empfohlen, die Kombination

per DHCP (automatisch) den Smartphones, Alle anderen IP-Adressen sind statisch (manuell)

Die Voreinstellung impliziert, dass der Router die IP-Adresse 172.24.4.1 besitzt und er die DHCP-Adressen an die Smartphones "least" (verleiht).

Die Datei mode.prm ist eine "Hilfsdatei", um einen LINUX-Fehler zu umgehen:

Sie definiert (noch einmal) den Router im Netzwerk (für ALLE IP-Knoten).

Sie gewährleistet, dass alle IP-Knoten (vornehmlich die Loks) den Router erneut nach einem Stromausfall des Router (Zusammenbrechen des WLANs) scannen. Ansonsten müssten auch alle Loks neu gebootet werden, um nach dem Netzwerk zu suchen und sich neu zu verbinden. Auch ein Router benötigt (aus anderen Gründen) diese Datei.

IP-Adresse

hier .51

des Routers

13

14

15

16

17 18

20

21

22

19 #

iface wlan0 inet static

address 172.24.4.51

mask 255.255.255.0

network 172.24.4.0

wireless-power off

gateway 172.24.4.51

broadcast 172.24.4.255

dns-nameservers 8.8.8.8

Es gelten die gleichen Aussagen wie beim stationären Router Betrieb (Seite 10).

Es wurde lediglich die IP-Adresse ____.1 in ____.51 geändert, damit die ADHOC Lok aus der NETIO-Oberfläche für die IP-Adresse 172.24.4.51 angesteuert werden kann!

	will initiastruct	ule_Noulei	10.00.2010 14.03	File Toluel		
	📔 mode.prm		25.01.2015 13:00	PRM File	1 KB	
114	i.prm	2 Dateien be	14.02.2016 10:27	PRM File	1 KB	
11			: - I-			
Ш.		SLAVE Betr	leb			
Ш.						
15						
	auto lo					
3	iface lo inet]	loopback				
4	1					
	5 # wlar	n0				
) ## Etnernet Scr	nnittstelle 0				
	# Beim Bootvord	gang automatisch start	en			
9	iface eth0 inet	t dhep				
10)					
	# wlar	n0				
	auto wianu	v] an O				
14	l arrow notprag v	N L L L L L L L L L L L L L L L L L L L				
_15	iface wlan0 ine	et static	Statische In-Adres	i "savel2" sah as	im WI AN _ typis	chwaisa Laks
16	address 172	2.24.4.51				
	mask 255.25		in einem Modellba	hn-WLAN mit sta	ationärem Router	ſ
	dns-namesei	rvers 172.24.4.1				
20	wireless-po	ower off				
21	wpa-ap-scan 1					
22	wpa-scan-ssid 1	1	SSID – Netzwerkk	ennung für alle H	P-Knoten des WI	IAN
2/	woo_ggid TINIAN	N T150115				
25	wpa-ssid ilwian wpa-psk TOPSE(CRET				
26	5		WPA-2 Passwort –	wichtig, mindes	tens 8 Zeichen!	
				U ,		
n 🗐	node.prm 👂					
	KOUTER=172.24.4	4.1				
2	WIFI_CHECK=YES					
	WAII_CHECK_TIME	с−оо # ⊿етс nacn воос =10 #				
Ę	PINGS=10		Datai mada armiat	oine "I lilfedete:"		IV.
(5 PING_WAIT_TIME=		Dater mode.prm Ist	eine Hillsualei	, uni einen Linu	13
	7	Feh	ler zu umgehen	- (siehe Erklärur	ig zuvor)	_
			3	\	5 /	

Trainline Service über das Internet per Tunneling

